Author:
Nikolic Dejan,Calderon Lindsay,Du Liqin,Post Steven R
Abstract
Abstract
Background
Inflammation is characterized by dynamic changes in the expression of cytokines, such as M-CSF, and modifications of lipids and proteins that result in the formation of ligands for Class A Scavenger Receptors (SR-A). These changes are associated with altered SR-A expression in macrophages; however, the intracellular signal pathways involved and the extent to which SR-A ligands regulate SR-A expression are not well defined. To address these questions, SR-A expression and function were examined in resident mouse peritoneal macrophages incubated with M-CSF or the selective SR-A ligand acetylated-LDL (AcLDL).
Results
M-CSF increased SR-A expression and function, and required the specific activation of p38 MAPK, but not ERK1/2 or JNK. Increased SR-A expression and function returned to basal levels 72 hours after removing M-CSF. We next determined whether prolonged incubation of macrophages with SR-A ligand alters SR-A expression. In contrast to most receptors, which are down-regulated by chronic exposure to ligand, SR-A expression was reversibly increased by incubating macrophages with AcLDL. AcLDL activated p38 in wild-type macrophages but not in SR-A-/- macrophages, and p38 activation was specifically required for AcLDL-induced SR-A expression.
Conclusions
These results demonstrate that in resident macrophages SR-A expression and function can be dynamically regulated by changes in the macrophage microenvironment that are typical of inflammatory processes. In particular, our results indicate a previously unrecognized role for ligand binding to SR-A in up-regulating SR-A expression and activating p38 MAPK. In this way, SR-A may modulate inflammatory responses by enhancing macrophage uptake of modified protein/lipid, bacteria, and cell debris; and by regulating the production of inflammatory cytokines, growth factors, and proteolytic enzymes.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Wu H, Moulton K, Horvai A, Parik S, Glass CK: Combinatorial interactions between AP-1 and ets domain proteins contribute to the developmental regulation of the macrophage scavenger receptor gene. Mol Cell Biol. 1994, 14 (3): 2129-2139.
2. Geng Y, Kodama T, Hansson GK: Differential expression of scavenger receptor isoforms during monocyte-macrophage differentiation and foam cell formation. Arterioscler Thromb. 1994, 14 (5): 798-806. 10.1161/01.ATV.14.5.798.
3. Fukuhara-Takaki K, Sakai M, Sakamoto Y-i, Takeya M, Horiuchi S: Expression of class A scavenger receptor is enhanced by high glucose in vitro and under diabetic conditions in vivo; one mechanism for an increased rate of atherosclerosis in diabetes. J Biol Chem. 2004, M408715200-
4. Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, Takahashi K: Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am J Pathol. 1992, 141 (3): 591-599.
5. Gough PJ, Greaves DR, Suzuki H, Hakkinen T, Hiltunen MO, Turunen M, Herttuala SY, Kodama T, Gordon S: Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1999, 19 (3): 461-471. 10.1161/01.ATV.19.3.461.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献