Abstract
Abstract
OSM2LULC is a software package developed to automatically convert OpenStreetMap (OSM) data into Land Use Land Cover (LULC) maps using Free and Open Source Software for Geospatial (FOSS4G) tools. It needs to be highly efficient given the increasing detail of OSM data and the need to apply it to large extent regions. In this article, a comparison between the implementation of OSM2LULC in different available GIS platforms is made using both vector and raster data structures, which resulted in different versions. A description of the differences of each version is made and, to assess their performance, they were applied to four different study areas with different characteristics, in terms of available OSM data and area size. The performance of each version was evaluated taking into account: the overall processing time required to obtain LULC maps; and differences in the results obtained when different data structures (vector and raster) were used. Results showed that the adoption of a strategy that favors interoperability between FOSS4G and the combined use of both vector and raster data promotes a performance increase. After analysing the topological relationships of OSM data, the conversion to raster data format and the execution of procedural parts with such data indicated significant performance gains, without any positional distortions that significantly compromise the applicability of the final result in further case scenarios.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Antoniou V, Fonte C, See L, Estima J, Arsanjani J, Lupia F, Minghini M, Foody G, Fritz S. Investigating the feasibility of geo-tagged photographs as sources of land cover input data. ISPRS Int J Geo Inf. 2016;5:64.
2. Arpaci A, Malowerschnig B, Sass O, Vacik H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr. 2014;53:258–70.
3. Arsanjani J, Helbich M, Bakillah M, Hagenauer J, Zipf A. Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inform Sci. 2013;27:2264–78.
4. Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A, Pei X, Duan Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 2018;626:1121–35.
5. Estima J, Fonte CC, Painho M. Comparative study of land use/cover classification using Flickr photos, satellite imagery and Corine land cover database. In: Proceedings of the 17th AGILE conference on geographic information science. Castellón: Association of Geographic Information Laboratories in Europe (AGILE); 2014. p. 3–6.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献