Forecasting urban futures: Evaluating global land use data sensitivity for regional growth simulation in the Ruhr Metropolitan Area

Author:

Rienow AndreasORCID

Abstract

In recent years, numerous multitemporal global land use and land cover products have been published acting as valuable source for training spatially explicit geosimulation models forecasting urban growth. However, there is a notable gap in research that specifically addresses the sensitivity of models traing with those data sets when it comes to regional modeling purposes. Accordingly, the objectives of this study were to calibrate, validate, and employ global urban input datasets for the regional simulation of urban growth by the year 2030. The SLEUTH urban growth model, focused on the metropolitan area of the Ruhr, Germany, was calibrated using the Global Human Settlement Layer, World Settlement Footprint Evolution, historical OpenStreetMap data, and a Digital Land Cover Model for Germany. The goal was to compare the results in terms of accuracy, certainty, quantity, and allocation, particularly in urban areas susceptible to floods and heat. While all models achieved high accuracy levels concerning quantity and allocation, the extent of new settlements varied from 40.77 km2 to 477.91 km2. The models based on World Settlement Footprint and OpenStreetMap exhibited higher certainty and lower stochasticity. As the simulated urban growth increased, there was a corresponding rise in the likelihood of allocating new settlements in areas affected by natural hazards. While all models presented a similar relative portion of new settlement areas impacted by floods, variations emerged in terms of areas affected by unfavorable thermal conditions. This study underscored the potential use of historical OpenStreetMap data in training cellular automation for geosimulating future settlement growth. Furthermore, it highlighted the applicability of global Earth observation-based urban datasets for regional geosimulation and explored the impacts of diverse input data on the accuracy, certainty, quantity, and allocation performances in simulating future conditions.

Publisher

Erdkunde

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3