Cholesterol efflux regulator ABCA1 exerts protective role against high shear stress-induced injury of HBMECs via regulating PI3K/Akt/eNOS signaling

Author:

Li Zhe,Li Jia-Nan,Li Qiang,Liu Chun,Zhou Lin-Hua,Zhang Qi,Xu Yi

Abstract

Abstract Background In brain, microvascular endothelial cells are exposed to various forces, including shear stress (SS). However, little is known about the effects of high shear stress (HSS) on human brain microvascular endothelial cells (HBMECs) and the underlying mechanism. The cholesterol efflux regulator ATP-binding cassette subfamily A member 1 (ABCA1) has been demonstrated to exert protective effect on HBMECs. However, whether ABCA1 is involved in the mechanism underneath the effect of HSS on HBMECs remains obscure. In the present study, a series of experiments were performed to better understand the effect of HSS on cellular processes of HBMECs and the possible involvement of ABCA1 and PI3K/Akt/eNOS in the underlying mechanisms. Results HBMECs were subjected to physiological SS (PSS) or high SS (HSS). Cell migration was evaluated using Transwell assay. Apoptotic HBMECs were detected by flow cytometry or caspase3/7 activity. IL-1β, IL-6, MCP-1 and TNF-α levels were measured by ELISA. RT-qPCR and western blotting were used for mRNA and protein expression detection, respectively. ROS and NO levels were detected using specific detection kits. Compared to PSS, HBMECs exhibited decreased cell viability and migration and increased cell apoptosis, increased levels of inflammatory cytokines, and improved ROS and NO productions after HSS treatment. Moreover, HSS downregulated ABCA1 but upregulated the cholesterol efflux-related proteins MMP9, AQP4, and CYP46 and activated PI3K/Akt/eNOS pathway. Overexpression of ABCA1 in HBMECS inhibited PI3K/Akt/eNOS pathway and counteracted the deleterious effects of HSS. Contrary effects were observed by ABCA1 silencing. Inhibiting PI3K/Akt/eNOS pathway mimicked ABCA1 effects, suggesting that ABCA1 protects HBMECs from HSS via PI3K/Akt/eNOS signaling. Conclusion These results advanced our understanding on the mechanisms of HSS on HBMECs and potentiated ABCA1/PI3K/Akt/eNOS pathway as therapeutic target for cerebrovascular diseases.

Funder

Special Program for Clinical Research in Health Industry of Shanghai Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3