Author:
Champigny Marc J,Sung Wilson WL,Catana Vasile,Salwan Rupa,Summers Peter S,Dudley Susan A,Provart Nicholas J,Cameron Robin K,Golding G Brian,Weretilnyk Elizabeth A
Abstract
Abstract
Background
The investigation of extremophile plant species growing in their natural environment offers certain advantages, chiefly that plants adapted to severe habitats have a repertoire of stress tolerance genes that are regulated to maximize plant performance under physiologically challenging conditions. Accordingly, transcriptome sequencing offers a powerful approach to address questions concerning the influence of natural habitat on the physiology of an organism. We used RNA sequencing of Eutrema salsugineum, an extremophile relative of Arabidopsis thaliana, to investigate the extent to which genetic variation and controlled versus natural environments contribute to differences between transcript profiles.
Results
Using 10 million cDNA reads, we compared transcriptomes from two natural Eutrema accessions (originating from Yukon Territory, Canada and Shandong Province, China) grown under controlled conditions in cabinets and those from Yukon plants collected at a Yukon field site. We assessed the genetic heterogeneity between individuals using single-nucleotide polymorphisms (SNPs) and the expression patterns of 27,016 genes. Over 39,000 SNPs distinguish the Yukon from the Shandong accessions but only 4,475 SNPs differentiated transcriptomes of Yukon field plants from an inbred Yukon line. We found 2,989 genes that were differentially expressed between the three sample groups and multivariate statistical analyses showed that transcriptomes of individual plants from a Yukon field site were as reproducible as those from inbred plants grown under controlled conditions. Predicted functions based upon gene ontology classifications show that the transcriptomes of field plants were enriched by the differential expression of light- and stress-related genes, an observation consistent with the habitat where the plants were found.
Conclusion
Our expectation that comparative RNA-Seq analysis of transcriptomes from plants originating in natural habitats would be confounded by uncontrolled genetic and environmental factors was not borne out. Moreover, the transcriptome data shows little genetic variation between laboratory Yukon Eutrema plants and those found at a field site. Transcriptomes were reproducible and biological associations meaningful whether plants were grown in cabinets or found in the field. Thus RNA-Seq is a valuable approach to study native plants in natural environments and this technology can be exploited to discover new gene targets for improved crop performance under adverse conditions.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Ghalambor CK, McKay JK, Carroll SP, Reznick DN: Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Func Ecol. 2007, 21: 394-407. 10.1111/j.1365-2435.2007.01283.x.
2. Richards CL, White SN, McGuire MA, Franks SJ, Donovan LA, Mauricio R: Plasticity, not adaptation to salt level, explains variation along a salinity gradient in a salt marsh perennial. Estuarine Coastal Shelf Sci. 2010, 33: 840-852.
3. Des Marais DL, Juenger TE: Pleiotrophy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci. 2010, 1206: 56-79. 10.1111/j.1749-6632.2010.05703.x.
4. Núñez-Farfán J, Schlichting CD: Evolution in changing environments: The “Synthetic” work of Clausen, Keck, and Hiesey. Quart Rev Biol. 2001, 76: 433-457. 10.1086/420540.
5. Mishra Y, Johansson Jänkänpää J, Kiss AZ, Funk C, Schröder WP, Jansson S: Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol. 2012, 12: 6-10.1186/1471-2229-12-6.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献