Author:
Mishra Yogesh,Johansson Jänkänpää Hanna,Kiss Anett Z,Funk Christiane,Schröder Wolfgang P,Jansson Stefan
Abstract
Abstract
Background
Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences.
Results
Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated.
Conclusion
Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Atkin OK, Loveys BR, Atkinson LJ, Pons TL: Phenotypic plasticity and growth temperature: understanding site-specific variability. J Exp Bot. 2006, 57: 267-281.
2. Poorter H, Pepin S, Rijkers T, de Jong Y, Evans JR, Körner C: Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J Exp Bot. 2006, 57: 355-371.
3. Weinig C, Ungerer MC, Dorn LA, Kane NC, Toyonaga Y, Halldorsdottir SS, Mackay TFC, Purugganan MD, Schmitt J: Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics. 2002, 162: 1875-1884.
4. Malmberg RL, Held S, Waits A, Mauricio R: Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics. 2005, 171: 2013-2027. 10.1534/genetics.105.046078.
5. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F: Linkage and association mapping of Arabidopsis thaliana flowering time in nature. Plos Genetics. 2010, 6:
Cited by
109 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献