Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii

Author:

Moreira Leandro M,Almeida Nalvo F,Potnis Neha,Digiampietri Luciano A,Adi Said S,Bortolossi Julio C,da Silva Ana C,da Silva Aline M,de Moraes Fabrício E,de Oliveira Julio C,de Souza Robson F,Facincani Agda P,Ferraz André L,Ferro Maria I,Furlan Luiz R,Gimenez Daniele F,Jones Jeffrey B,Kitajima Elliot W,Laia Marcelo L,Leite Rui P,Nishiyama Milton Y,Rodrigues Neto Julio,Nociti Letícia A,Norman David J,Ostroski Eric H,Pereira Haroldo A,Staskawicz Brian J,Tezza Renata I,Ferro Jesus A,Vinatzer Boris A,Setubal João C

Abstract

Abstract Background Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference130 articles.

1. Timmer LW, Garnsey SM, Graham JH, (eds): Compendium of Citrus Diseases. 2000, St. Paul, MN: American Phytopathological Society, 2

2. Gottwald TR, Graham JH, Schubert TS: Citrus canker: The pathogen and its impact. Plant Health Progress. 2002, [http://plantmanagementnetwork.org/pub/php/review/citruscanker]

3. Brunings AM, Gabriel DW: Xanthomonas citri: breaking the surface. Molecular Plant Pathology. 2003, 4 (3): 141-157. 10.1046/j.1364-3703.2003.00163.x.

4. Schubert TS, Miller JW: Bacterial citrus canker. Plant Pathology Circular. 1996, Florida Department of Agriculture and Consumer Services DoPI, Gainesville, FL, 377: 110-111.

5. Koizumi M: Citrus canker: the world situation. 1985, University of Florida: Lake Alfred

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3