Author:
Moreira Leandro M,Almeida Nalvo F,Potnis Neha,Digiampietri Luciano A,Adi Said S,Bortolossi Julio C,da Silva Ana C,da Silva Aline M,de Moraes Fabrício E,de Oliveira Julio C,de Souza Robson F,Facincani Agda P,Ferraz André L,Ferro Maria I,Furlan Luiz R,Gimenez Daniele F,Jones Jeffrey B,Kitajima Elliot W,Laia Marcelo L,Leite Rui P,Nishiyama Milton Y,Rodrigues Neto Julio,Nociti Letícia A,Norman David J,Ostroski Eric H,Pereira Haroldo A,Staskawicz Brian J,Tezza Renata I,Ferro Jesus A,Vinatzer Boris A,Setubal João C
Abstract
Abstract
Background
Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C.
Results
We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein.
Conclusion
We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.
Publisher
Springer Science and Business Media LLC
Reference130 articles.
1. Timmer LW, Garnsey SM, Graham JH, (eds): Compendium of Citrus Diseases. 2000, St. Paul, MN: American Phytopathological Society, 2
2. Gottwald TR, Graham JH, Schubert TS: Citrus canker: The pathogen and its impact. Plant Health Progress. 2002, [http://plantmanagementnetwork.org/pub/php/review/citruscanker]
3. Brunings AM, Gabriel DW: Xanthomonas citri: breaking the surface. Molecular Plant Pathology. 2003, 4 (3): 141-157. 10.1046/j.1364-3703.2003.00163.x.
4. Schubert TS, Miller JW: Bacterial citrus canker. Plant Pathology Circular. 1996, Florida Department of Agriculture and Consumer Services DoPI, Gainesville, FL, 377: 110-111.
5. Koizumi M: Citrus canker: the world situation. 1985, University of Florida: Lake Alfred
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献