Author:
Kay John,Meijer Harold JG,ten Have Arjen,van Kan Jan AL
Abstract
Abstract
Background
Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to humans) and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts.
Results
Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively) were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound.
Conclusions
One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aβ peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite Plasmodium falciparum during their translocation into the host red blood cell. Since the translocation of Phytophthora effector proteins is currently a topic of intense research activity, the identification in Phytophthora of potential functional homologues of plasmepsin V would appear worthy of investigation. Indeed, elucidation of the physiological roles of the APs identified here offers areas for future study. The significant revision of gene models and detailed annotation presented here should significantly facilitate experimental design.
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Brasier C: Phytophthora biodiversity: How many Phytophthora species are there?. Proceedings of the 4th IUFRO workshop on Phytophthora in forest and natural ecosystems. Edited by: Goheen E. 2008, USDA Forest series, 101-115.
2. Ristaino JB: Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes and Infection. 2002, 4: 1369-1377. 10.1016/S1286-4579(02)00010-2.
3. Haverkort A, Boonekamp P, Hutten R, Jacobsen E, Lotz L, Kessel G, Visser R, van der Vossen E: Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 2008, 51: 47-57. 10.1007/s11540-008-9089-y.
4. Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova AO, Baxter L, Beynon JL, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, et al: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009, 461: 393-398. 10.1038/nature08358.
5. Govers F, Gijzen M: Phytophthora genomics: the plant destroyers'genome decoded. Mol Plant Microbe Interact. 2006, 19: 1295-1301. 10.1094/MPMI-19-1295.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献