Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host–Parasite Interactions

Author:

Zheng Yuanting1ORCID,Young Neil D.1ORCID,Song Jiangning234ORCID,Gasser Robin B.1ORCID

Affiliation:

1. Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia

2. Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia

3. Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia

4. Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia

Abstract

Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber’s pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 “mixed” proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host–parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3