MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi

Author:

Maxwell Evan K,Ryan Joseph F,Schnitzler Christine E,Browne William E,Baxevanis Andreas D

Abstract

Abstract Background MicroRNAs play a vital role in the regulation of gene expression and have been identified in every animal with a sequenced genome examined thus far, except for the placozoan Trichoplax. The genomic repertoires of metazoan microRNAs have become increasingly endorsed as phylogenetic characters and drivers of biological complexity. Results In this study, we report the first investigation of microRNAs in a species from the phylum Ctenophora. We use short RNA sequencing and the assembled genome of the lobate ctenophore Mnemiopsis leidyi to show that this species appears to lack any recognizable microRNAs, as well as the nuclear proteins Drosha and Pasha, which are critical to canonical microRNA biogenesis. This finding represents the first reported case of a metazoan lacking a Drosha protein. Conclusions Recent phylogenomic analyses suggest that Mnemiopsis may be the earliest branching metazoan lineage. If this is true, then the origins of canonical microRNA biogenesis and microRNA-mediated gene regulation may postdate the last common metazoan ancestor. Alternatively, canonical microRNA functionality may have been lost independently in the lineages leading to both Mnemiopsis and the placozoan Trichoplax, suggesting that microRNA functionality was not critical until much later in metazoan evolution.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dicer structure and function: conserved and evolving features;EMBO reports;2023-06-13

2. Epigenomics in stress tolerance of plants under the climate change;Molecular Biology Reports;2023-06-09

3. Epigenomics in stress tolerance of plants under the climate change;2023-01-04

4. Epigenetics of Abiotic Stress Tolerance in Legumes;Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance;2023

5. Small RNAs in Cnidaria: A review;Evolutionary Applications;2022-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3