Affiliation:
1. CEITEC‐Central European Institute of Technology Masaryk University Brno Czech Republic
2. Faculty of Science, National Centre for Biomolecular Research Masaryk University Brno Czech Republic
3. Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i. Prague 4 Czech Republic
Abstract
AbstractRNase III Dicer produces small RNAs guiding sequence‐specific regulations, with important biological roles in eukaryotes. Major Dicer‐dependent mechanisms are RNA interference (RNAi) and microRNA (miRNA) pathways, which employ distinct types of small RNAs. Small interfering RNAs (siRNAs) for RNAi are produced by Dicer from long double‐stranded RNA (dsRNA) as a pool of different small RNAs. In contrast, miRNAs have specific sequences because they are precisely cleaved out from small hairpin precursors. Some Dicer homologs efficiently generate both, siRNAs and miRNAs, while others are adapted for biogenesis of one small RNA type. Here, we review the wealth of recent structural analyses of animal and plant Dicers, which have revealed how different domains and their adaptations contribute to substrate recognition and cleavage in different organisms and pathways. These data imply that siRNA generation was Dicer's ancestral role and that miRNA biogenesis relies on derived features. While the key element of functional divergence is a RIG‐I‐like helicase domain, Dicer‐mediated small RNA biogenesis also documents the impressive functional versatility of the dsRNA‐binding domain.
Funder
Grantová Agentura České Republiky
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献