Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees

Author:

Adams Heather A,Southey Bruce R,Robinson Gene E,Rodriguez-Zas Sandra L

Abstract

Abstract Background The information from multiple microarray experiments can be integrated in an objective manner via meta-analysis. However, multiple meta-analysis approaches are available and their relative strengths have not been directly compared using experimental data in the context of different gene expression scenarios and studies with different degrees of relationship. This study investigates the complementary advantages of meta-analysis approaches to integrate information across studies, and further mine the transcriptome for genes that are associated with complex processes such as behavioral maturation in honey bees. Behavioral maturation and division of labor in honey bees are related to changes in the expression of hundreds of genes in the brain. The information from various microarray studies comparing the expression of genes at different maturation stages in honey bee brains was integrated using complementary meta-analysis approaches. Results Comparison of lists of genes with significant differential expression across studies failed to identify genes with consistent patterns of expression that were below the selected significance threshold, or identified genes with significant yet inconsistent patterns. The meta-analytical framework supported the identification of genes with consistent overall expression patterns and eliminated genes that exhibited contradictory expression patterns across studies. Sample-level meta-analysis of normalized gene-expression can detect more differentially expressed genes than the study-level meta-analysis of estimates for genes that were well described by similar model parameter estimates across studies and had small variation across studies. Furthermore, study-level meta-analysis was well suited for genes that exhibit consistent patterns across studies, genes that had substantial variation across studies, and genes that did not conform to the assumptions of the sample-level meta-analysis. Meta-analyses confirmed previously reported genes and helped identify genes (e.g. Tomosyn, Chitinase 5, Adar, Innexin 2, Transferrin 1, Sick, Oatp26F) and Gene Ontology categories (e.g. purine nucleotide binding) not previously associated with maturation in honey bees. Conclusion This study demonstrated that a combination of meta-analytical approaches best addresses the highly dimensional nature of genome-wide microarray studies. As expected, the integration of gene expression information from microarray studies using meta-analysis enhanced the characterization of the transcriptome of complex biological processes.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3