Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.)

Author:

Mizuno Hiroshi,Kawahara Yoshihiro,Sakai Hiroaki,Kanamori Hiroyuki,Wakimoto Hironobu,Yamagata Harumi,Oono Youko,Wu Jianzhong,Ikawa Hiroshi,Itoh Takeshi,Matsumoto Takashi

Abstract

Abstract Background Microarray technology is limited to monitoring the expression of previously annotated genes that have corresponding probes on the array. Computationally annotated genes have not fully been validated, because ESTs and full-length cDNAs cannot cover entire transcribed regions. Here, mRNA-Seq (an Illumina cDNA sequencing application) was used to monitor whole mRNAs of salinity stress-treated rice tissues. Results Thirty-six-base-pair reads from whole mRNAs were mapped to the rice genomic sequence: 72.0% to 75.2% were mapped uniquely to the genome, and 5.0% to 5.7% bridged exons. From the piling up of short reads mapped on the genome, a series of programs (Bowtie, TopHat, and Cufflinks) comprehensively predicted 51,301 (shoot) and 54,491 (root) transcripts, including 2,795 (shoot) and 3,082 (root) currently unannotated in the Rice Annotation Project database. Of these unannotated transcripts, 995 (shoot) and 1,052 (root) had ORFs similar to those encoding the amino acid sequences of functional proteins in a BLASTX search against UniProt and RefSeq databases. Among the unannotated genes, 213 (shoot) and 436 (root) were differentially expressed in response to salinity stress. Sequence-based and array-based measurements of the expression ratios of previously annotated genes were highly correlated. Conclusion Unannotated transcripts were identified on the basis of the piling up of mapped reads derived from mRNAs in rice. Some of these unannotated transcripts encoding putative functional proteins were expressed differentially in response to salinity stress.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3