Author:
Duressa Dechassa,Anchieta Amy,Chen Dongquan,Klimes Anna,Garcia-Pedrajas Maria D,Dobinson Katherine F,Klosterman Steven J
Abstract
Abstract
Background
The soilborne fungus, Verticillium dahliae, causes Verticillium wilt disease in plants. Verticillium wilt is difficult to control since V. dahliae is capable of persisting in the soil for 10 to 15 years as melanized microsclerotia, rendering crop rotation strategies for disease control ineffective. Microsclerotia of V. dahliae overwinter and germinate to produce infectious hyphae that give rise to primary infections. Consequently, microsclerotia formation, maintenance, and germination are critically important processes in the disease cycle of V. dahliae.
Results
To shed additional light on the molecular processes that contribute to microsclerotia biogenesis and melanin synthesis in V. dahliae, three replicate RNA-seq libraries were prepared from 10 day-old microsclerotia (MS)-producing cultures of V. dahliae, strain VdLs.17 (average = 52.23 million reads), and those not producing microsclerotia (NoMS, average = 50.58 million reads). Analyses of these libraries for differential gene expression revealed over 200 differentially expressed genes, including up-regulation of melanogenesis-associated genes tetrahydroxynaphthalene reductase (344-fold increase) and scytalone dehydratase (231-fold increase), and additional genes located in a 48.8 kilobase melanin biosynthetic gene cluster of strain VdLs.17. Nearly 50% of the genes identified as differentially expressed in the MS library encode hypothetical proteins. Additional comparative analyses of gene expression in V. dahliae, under growth conditions that promote or preclude microsclerotial development, were conducted using a microarray approach with RNA derived from V. dahliae strain Dvd-T5, and from the amicrosclerotial vdh1 strain. Differential expression of selected genes observed by RNA-seq or microarray analysis was confirmed using RT-qPCR or Northern hybridizations.
Conclusion
Collectively, the data acquired from these investigations provide additional insight into gene expression and molecular processes that occur during MS biogenesis and maturation in V. dahliae. The identified gene products could therefore potentially represent new targets for disease control through prevention of survival structure development.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV: Diversity, pathogenicity, and management of Verticillium species. Ann Rev Phytopathol. 2009, 47: 39-62. 10.1146/annurev-phyto-080508-081748.
2. Pegg GF, Brady BL: Verticillium Wilts. 2002, Wallingford: CABI Publishing
3. Wilhelm S: Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology. 1955, 45: 180-181.
4. Schreiber LR, Green RJ: Effect of root exudates on germination of conidia and microsclerotia of Verticillium albo-atrum inhibited by the soil fungistatic principle. Phytopathology. 1963, 53: 260-264.
5. Fitzell R, Evans G, Fahy PC: Studies on the colonization of plant roots by Verticillium dahliae Klebahn with use of immunofluorescent staining. Austr J Bot. 1980, 28: 357-368. 10.1071/BT9800357.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献