Distribution and Pathogenicity Differentiation of Physiological Races of Verticillium dahliae from Cotton Stems in Western China

Author:

Zhang Jianwei12,Jiamahate Aerguli2,Feng Hui3,Bozorov Tohir A.24ORCID,Zhang Dawei5,Guo Jianwei6ORCID,Yang Honglan2ORCID,Zhang Daoyuan27ORCID

Affiliation:

1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China

2. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. State Key Laboratory of Biocontrol and Guangdong, Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, China

4. Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, Kibray 111226, Uzbekistan

5. Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

6. College of Agronomy and Life Sciences, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming 500600, China

7. Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China

Abstract

Verticillium wilt, caused by the pathogenic fungus Verticillium dahliae, has emerged as a severe threat to cotton globally. However, little is known about the genetic diversity of this pathogen in an infected single cotton plant. In this study, we isolated three new V. dahliae strains from the disease stems of Gossypium hirsutum from the cotton field in Western China and assessed their pathogenicity to the cotton cultivar Xinnongmian-1 and its two transgenic lines, as well as two laboratory strains, VD592 and VD991. These three new V. dahliae strains were identified using DNA barcodes of tryptophan synthase (TS), actin (ACT), elongation factor 1-α (EF), and glyceraldehyde-3-phosphate dehydrogenase (GPD). Moreover, the haplotype analysis revealed that the three new races had distinct haplotypes at the TS locus. Furthermore, the results of culture features and genetic diversity of ISSR (inter-simple sequence repeat) revealed that there were separate V. dahliae strains, which were strong defoliating pathotypes belonging to race 2 type, as determined by particular DNA marker recognition. The identified strains demonstrated varied levels of pathogenicity by leaf disc and entire plant inoculation methods. Conservatively, these strains showed some pathogenicity on cotton lines, but were less pathogenic than the reference strains. The findings revealed that several strong defoliating V. dahliae pathotypes coexist on the same cotton plant. It indicats the importance of regular monitoring as an early warning system, as well as the detection and reporting of virulent pathogen strains and their effects on crop response.

Funder

West Light Talents Cultivation Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Natural Science Foundation of the Xinjiang Uygur Autonomous Region

Key Research Program of Frontier Sciences, Chinese Academy of Sciences

Third Xinjiang Scientific Expedition Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3