Deep mRNA sequencing reveals stage-specific transcriptome alterations during microsclerotia development in the smoke tree vascular wilt pathogen, Verticillium dahliae

Author:

Xiong Dianguang,Wang Yonglin,Ma Jie,Klosterman Steven J,Xiao Shuxiao,Tian Chengming

Abstract

Abstract Background Verticillium dahliae is a soil-borne fungus that causes vascular wilt diseases in a wide range of plant hosts. V. dahliae produces multicelled, melanized resting bodies, also known as microsclerotia (MS) that can survive for years in the soil. The MS are the primary source of infection of the Verticillium disease cycle. Thus, MS formation marks an important event in the disease cycle of V. dahliae. Results In this study, next generation sequencing technology of RNA-Seq was employed to investigate the global transcriptomic dynamics of MS development to identify differential gene expression at several stages of MS formation in strain XS11 of V. dahliae, isolated from smoke tree. We observed large-scale changes in gene expression during MS formation, such as increased expression of genes involved in protein metabolism and carbohydrate metabolism. Genes involved in glycolytic pathway and melanin biosynthesis were dramatically up-regulated in MS. Cluster analyses revealed increased expression of genes encoding products involved in primary metabolism and stress responses throughout MS development. Differential expression of ubiquitin-dependent protein catabolism and cell death-associated genes during MS development were revealed. Homologs of genes located in the lineage-specific (LS) regions of V. dahliae strain VdLs.17, were either not expressed or showed low expression. Furthermore, alternative splicing (AS) events were analyzed, revealing that over 95.0% AS events involve retention of introns (RI). Conclusions These data reveal the dynamics of transcriptional regulation during MS formation and were used to construct a comprehensive high-resolution gene expression map. This map provides a key resource for understanding the biology and molecular basis of MS development of V. dahliae.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3