VdTps2 Modulates Plant Colonization and Symptom Development in Verticillium dahliae

Author:

Xiao Luyao1,Tang Chen1,Klosterman Steven J.2,Wang Yonglin1ORCID

Affiliation:

1. State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China

2. United States Department of Agriculture, Agricultural Research Service, Salinas, U.S.A.

Abstract

The trehalose biosynthesis pathway is a potential target for antifungal drugs development. Trehalose phosphate synthase (TPS) and phosphatase are widely conserved components of trehalose biosynthesis in fungi. However, the role of trehalose biosynthesis in the vascular plant-pathogenic fungus Verticillium dahliae remains unclear. Here, we investigated the functions of the TPS complex, including VdTps1, VdTps2, and VdTps3 in V. dahliae. Unlike VdTps2, deletion of VdTps1 or VdTps3 did not alter any phenotypes compared with the wild-type strain. In contrast, the Δ VdTps2 strain showed severely depressed radial growth due to the abnormal swelling of the hyphal tips. Further, deletion of VdTps2 increased microsclerotia formation, melanin biosynthesis, and resistance to cell-wall perturbation and high-temperature stress. Virulence assays and quantification of fungal biomass revealed that deletion of VdTps2 delayed disease symptom development, as evident by the reduced virulence and decreased biomass of the Δ VdTps2 strain in plant stem tissue following inoculation. Additionally, increases in penetration peg formation observed in the Δ VdTps2 strain in the presence of H2O2 suggested that VdTps2 suppresses initial colonization. Our results also revealed the role of VdTps2 as a regulator of autophagy. Together, these results indicate that VdTps2 contributes to plant colonization and disease development. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3