Author:
Reyes Alejandro,Sandoval Andrea,Cubillos-Ruiz Andrés,Varley Katherine E,Hernández-Neuta Ivan,Samper Sofía,Martín Carlos,García María Jesús,Ritacco Viviana,López Lucelly,Robledo Jaime,Zambrano María Mercedes,Mitra Robi D,Del Portillo Patricia
Abstract
Abstract
Background
The insertion element IS6110 is one of the main sources of genomic variability in Mycobacterium tuberculosis, the etiological agent of human tuberculosis. Although IS 6110 has been used extensively as an epidemiological marker, the identification of the precise chromosomal insertion sites has been limited by technical challenges. Here, we present IS-seq, a novel method that combines high-throughput sequencing using Illumina technology with efficient combinatorial sample multiplexing to simultaneously probe 519 clinical isolates, identifying almost all the flanking regions of the element in a single experiment.
Results
We identified a total of 6,976 IS6110 flanking regions on the different isolates. When validated using reference strains, the method had 100% specificity and 98% positive predictive value. The insertions mapped to both coding and non-coding regions, and in some cases interrupted genes thought to be essential for virulence or in vitro growth. Strains were classified into families using insertion sites, and high agreement with previous studies was observed.
Conclusions
This high-throughput IS-seq method, which can also be used to map insertions in other organisms, extends previous surveys of in vivo interrupted loci and provides a baseline for probing the consequences of disruptions in M. tuberculosis strains.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. WHO: Global tuberculosis control-epidemiology, strategy, financing. WHO Report 2009. WHO/HTM/TB/2009.411. Book Global tuberculosis control-epidemiology, strategy, financing. 2009, WHO Report, WHO/HTM/TB/2009.411
2. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K: A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002, 99: 3684-3689. 10.1073/pnas.052548299.
3. Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E: Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008, 3: e3426-10.1371/journal.pone.0003426.
4. Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D: The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009, 7: 845-855.
5. Nicol MP, Wilkinson RJ: The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg. 2008, 102: 955-965. 10.1016/j.trstmh.2008.03.025.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献