Pan-genome association study of Mycobacterium tuberculosis lineage-4 revealed specific genes related to the high and low prevalence of the disease in patients from the North-Eastern area of Medellín, Colombia

Author:

Hurtado-Páez Uriel,Álvarez Zuluaga Nataly,Arango Isaza Rafael Eduardo,Contreras-Moreira Bruno,Rouzaud François,Robledo Jaime

Abstract

Mycobacterium tuberculosis (Mtb) lineage 4 is responsible for the highest burden of tuberculosis (TB) worldwide. This lineage has been the most prevalent lineage in Colombia, especially in the North-Eastern (NE) area of Medellin, where it has been shown to have a high prevalence of LAM9 SIT42 and Haarlem1 SIT62 sublineages. There is evidence that regardless of environmental factors and host genetics, differences among sublineages of Mtb strains play an important role in the course of infection and disease. Nevertheless, the genetic basis of the success of a sublineage in a specific geographic area remains uncertain. We used a pan-genome-wide association study (pan-GWAS) of 47 Mtb strains isolated from NE Medellin between 2005 and 2008 to identify the genes responsible for the phenotypic differences among high and low prevalence sublineages. Our results allowed the identification of 12 variants in 11 genes, of which 4 genes showed the strongest association to low prevalence (mmpL12, PPE29, Rv1419, and Rv1762c). The first three have been described as necessary for invasion and intracellular survival. Polymorphisms identified in low prevalence isolates may suggest related to a fitness cost of Mtb, which might reflect a decrease in their capacity to be transmitted or to cause an active infection. These results contribute to understanding the success of some sublineages of lineage-4 in a specific geographical area.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference77 articles.

1. Metal ion transport and regulation in Mycobacterium tuberculosis.;Agranoff;Front. Biosci.,2004

2. Basic local alignment search tool.;Altschul;J. Mol. Biol.,1990

3. UniProt: The universal protein knowledgebase.;Apweiler;Nucleic Acids Res.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3