Re-annotation of the physical map of Glycine max for polyploid-like regions by BAC end sequence driven whole genome shotgun read assembly

Author:

Saini Navinder,Shultz Jeffry,Lightfoot David A

Abstract

Abstract Background Many of the world's most important food crops have either polyploid genomes or homeologous regions derived from segmental shuffling following polyploid formation. The soybean (Glycine max) genome has been shown to be composed of approximately four thousand short interspersed homeologous regions with 1, 2 or 4 copies per haploid genome by RFLP analysis, microsatellite anchors to BACs and by contigs formed from BAC fingerprints. Despite these similar regions,, the genome has been sequenced by whole genome shotgun sequence (WGS). Here the aim was to use BAC end sequences (BES) derived from three minimum tile paths (MTP) to examine the extent and homogeneity of polyploid-like regions within contigs and the extent of correlation between the polyploid-like regions inferred from fingerprinting and the polyploid-like sequences inferred from WGS matches. Results Results show that when sequence divergence was 1–10%, the copy number of homeologous regions could be identified from sequence variation in WGS reads overlapping BES. Homeolog sequence variants (HSVs) were single nucleotide polymorphisms (SNPs; 89%) and single nucleotide indels (SNIs 10%). Larger indels were rare but present (1%). Simulations that had predicted fingerprints of homeologous regions could be separated when divergence exceeded 2% were shown to be false. We show that a 5–10% sequence divergence is necessary to separate homeologs by fingerprinting. BES compared to WGS traces showed polyploid-like regions with less than 1% sequence divergence exist at 2.3% of the locations assayed. Conclusion The use of HSVs like SNPs and SNIs to characterize BACs wil improve contig building methods. The implications for bioinformatic and functional annotation of polyploid and paleopolyploid genomes show that a combined approach of BAC fingerprint based physical maps, WGS sequence and HSV-based partitioning of BAC clones from homeologous regions to separate contigs will allow reliable de-convolution and positioning of sequence scaffolds (see BES_scaffolds section of SoyGD). This approach will assist genome annotation for paleopolyploid and true polyploid genomes such as soybean and many important cereal and fruit crops.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference33 articles.

1. Schmidt ME, Suttner RJ, Klein J, Gibson PT, Lightfoot DA, Myers O: Registration of LS-G96 soybean germplasm resistant to soybean sudden death syndrome and soybean cyst nematode race 3. Crop Sci. 1999, 39: 598-

2. Concibido VC, Diers , Brian W, Arelli PR: A Decade of QTL Mapping for Cyst Nematode Resistance in Soybean. Crop Sci. 2004, 44: 1121-1131.

3. Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR: Genome duplication in soybean Glycine subgenus soja. Genetics. 1996, 144: 329-338.

4. Shultz JL, Kurunam DJ, Shopinski KL, Iqbal MJ, Kazi S, Zobrist K, Bashir R, Yaegashi S, Lavu N, Afzal A, Yesudas CR, Kassem MA, Wu C, Zhang HB, Town CD, Meksem K, Lightfoot DA: The Soybean genome database (SoyGD): A browser for display of duplicated, polyploid regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res. 2006, 34: D758-765. 10.1093/nar/gkj050. http://soybeangenome.siu.edu/cgi-bin/gbrowse/BES_scaffolds for Forrest BES to scaffolds; http://soybeangenome.siu.edu/cgi-bin/gbrowse/SSR_scaffolds for scaffold to SSR marker map and http://bioinformatics.siu.edu for the Forrest physical map,

5. Shopinski K, Iqbal J, Afzal J, Shultz J, Jayaraman D, Lightfoot DA: Development of a pooled probe method for locating small gene families in a physical map of soybean using stress related paralogues and a BAC minimum tile path. Plant Methods. 2006, 2: 20-28. 10.1186/1746-4811-2-20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3