Further understanding human disease genes by comparing with housekeeping genes and other genes
-
Published:2006-02-21
Issue:1
Volume:7
Page:
-
ISSN:1471-2164
-
Container-title:BMC Genomics
-
language:en
-
Short-container-title:BMC Genomics
Author:
Tu Zhidong,Wang Li,Xu Min,Zhou Xianghong,Chen Ting,Sun Fengzhu
Abstract
Abstract
Background
Several studies have compared various features of heritable disease genes with other so called non-disease genes, but they have yielded some conflicting results. A potential problem in those studies is that the non-disease genes contained a large number of essential genes – genes which are indispensable for humans to survive and reproduce. Since a functional disruption of an essential gene has fatal consequences, it's more reasonable to regard essential genes as extremely severe "disease" genes. Here we perform a comparative study on the features of human essential, disease, and other genes.
Results
In the absence of a set of well defined human essential genes, we consider a set of 1,789 ubiquitously expressed human genes (UEHGs), also known as housekeeping genes, as an approximation. We demonstrate that UEHGs are very likely to contain a large proportion of essential genes. We show that the UEHGs, disease genes and other genes are different in their evolutionary conservation rates, DNA coding lengths, gene functions, etc. Our findings systematically confirm that disease genes have an intermediate essentiality which is less than housekeeping genes but greater than other human genes.
Conclusion
The human genome may contain thousands of essential genes having features which differ significantly from disease and other genes. We propose to classify them as a unique group for comparisons of disease genes with non-disease genes. This new way of classification and comparison enables us to have a clearer understanding of disease genes.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Biotechnology
Reference42 articles.
1. Lopez-Bigas N, Ouzounis CA: Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004, 32: 3108-3114. 10.1093/nar/gkh605. 2. Bortoluzzi S, Romualdi C, Bisognin A, Danieli GA: Disease genes and intracellular protein networks. Physiol Genomics. 2003, 15: 223-227. 3. Simth NGC, Eyre-Walker A: Human disease genes: patterns and predictions. Gene. 2003, 318: 169-175. 10.1016/S0378-1119(03)00772-8. 4. Huang H, Winter EE, Wang H, Weinstock KG, Xing H, Goodstadt L, Stenson PD, Cooper DN, Smith D, Alba MM, Pointing CP, Fechtel K: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 2004, 5: R47-10.1186/gb-2004-5-7-r47. 5. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, Bakkoury ME, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillow DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnson M: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 418: 387-391. 10.1038/nature00935.
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|