Locally Adjust Networks Based on Connectivity and Semantic Similarities for Disease Module Detection

Author:

Liu Jia,Zhu Huole,Qiu Jianfeng

Abstract

For studying the pathogenesis of complex diseases, it is important to identify the disease modules in the system level. Since the protein-protein interaction (PPI) networks contain a number of incomplete and incorrect interactome, most existing methods often lead to many disease proteins isolating from disease modules. In this paper, we propose an effective disease module identification method IDMCSS, where the used human PPI networks are obtained by adding some potential missing interactions from existing PPI networks, as well as removing some potential incorrect interactions. In IDMCSS, a network adjustment strategy is developed to add or remove links around disease proteins based on both topological and semantic information. Next, neighboring proteins of disease proteins are prioritized according to a suggested similarity between each of them and disease proteins, and the protein with the largest similarity with disease proteins is added into a candidate disease protein set one by one. The stopping criterion is set to the boundary of the disease proteins. Finally, the connected subnetwork having the largest number of disease proteins is selected as a disease module. Experimental results on asthma demonstrate the effectiveness of the method in comparison to existing algorithms for disease module identification. It is also shown that the proposed IDMCSS can obtain the disease modules having crucial biological processes of asthma and 12 targets for drug intervention can be predicted.

Funder

Anhui Provincial Key Research and Development Plan

Natural Science Foundation of Anhui Province

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3