Identification of differential expression genes associated with host selection and adaptation between two sibling insect species by transcriptional profile analysis

Author:

Li Haichao,Zhang Hao,Guan Ruobing,Miao Xuexia

Abstract

Abstract Background Cotton bollworm (Helicoverpa armigera) and oriental tobacco budworm (Helicoverpa assulta) are noctuid sibling species. Under artificial manipulation, they can mate and produce fertile offspring. As serious agricultural insect pests, cotton bollworms are euryphagous insects, but oriental tobacco budworms are oligophagous insects. To identify the differentially expressed genes that affect host recognition and host adaptation between the two species, we constructed digital gene expression tag profiles for four developmental stages of the two species. High-throughput sequencing results indicated that we have got more than 23 million 17nt clean tags from both species, respectively. The number of unique clean tags was nearly same in both species (approximately 357,000). Results According to the gene annotation results, we identified 83 and 68 olfaction related transcripts from H. armigera and H. assulta, respectively. At the same time, 1137 and 1138 transcripts of digestion enzymes were identified from the two species. Among the olfaction related transcripts, more odorant binding protein and G protein-coupled receptor were identified in H. armigera than in H. assulta. Among the digestion enzymes, there are more detoxification enzyme, e.g. P450, carboxypeptidase and ATPase in H. assulta than in H. armigera. These differences partially explain that because of the narrow host plant range of H. assulta, more detoxification enzymes would help them increase the food detoxification and utilization efficiency. Conclusions This study supplied some differentially expressed genes affecting host selection and adaptation between the two sibling species. These genes will be useful information for studying on the evolution of host plant selection. It also provides some important target genes for insect species-specific control by RNAi technology.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3