Comparing the Transcriptomes of Two Different Tissues in Helicoverpa assulta (Guenée)

Author:

Zhang Hailing1ORCID,Li Kuiyin1,Zhang Yubo1

Affiliation:

1. Key Laboratory of Insect Information System and Resource Utilization, Development of Guizhou Province, Anshun University, Anshun, Guizhou 561000, China

Abstract

Helicoverpa assulta (Guenée), a moth species belonging to the Noctuidae (Lepidoptera) family, is a destructive agricultural pest that infests multiple cash crops. To assess differences in the gene expression profiles of different tissues in H. assulta, we analyzed the transcriptomes of two tissue types (midgut and hemocytes) using the Illumina Hiseq 2000 platform, on the basis of which we obtained 52076750 and 53404200 high-quality clean reads, respectively. De novo assembly yielded 46146 and 33707 unigenes from the midgut and hemocytes, respectively. After screening, we identified 23726 unigenes differentially expressed between the midgut and hemocytes. Taking the midgut as the control, we detected 7448 and 16278 unigenes that were up- and downregulated in hemocytes, respectively. Gene Ontology functional annotation divided the differentially expressed unigenes (DEUs) into three categories (biological process, cellular component, and molecular function) and 51 branches, whereas the Kyoto Encyclopedia of Genes and Genomes metabolic pathway annotation assigned the DEUs to six categories, mapping these to 258 pathways. In addition, we detected 224918 single-nucleotide polymorphic sites. Our findings based on transcriptome sequencing, data assembly, and functional gene annotation of two different tissues in H. assulta will provide a valuable reference for further excavation and study of functional genes in H. assulta.

Funder

Guizhou Province to Support the City (Prefecture) College Education Quality Improvement Project

Publisher

Hindawi Limited

Subject

General Chemistry

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3