Transcriptome Analysis of Detoxification-Related Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae)

Author:

Chen Haoliang1ORCID,Xie Minghui1,Lin Lulu1,Zhong Yongzhi1,Zhang Feng23,Su Weihua1

Affiliation:

1. Anhui-CABI Joint Laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

2. MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

3. CABI East & South-East Asia, Beijing 100081, China

Abstract

Abstract Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is an important pest on maize, and it can cause large yield losses. As S. frugiperda has invaded many developing countries in Africa and Asia in recent years, it could impact food security. Pesticides remain the main method to control S. frugiperda in the field, and this pest has developed resistance to some pesticides. In this study, we used second-generation sequencing technology to detect the gene expression change of S. frugiperda after treatment by LC20 of three pesticides, lufenuron, spinetoram, and tetrachloroamide, which have different modes of actions. The sequence data were first assembled into a 60,236 unigenes database, and then the differential expression unigenes (DEUs) after pesticide treatment were identified. The DEU numbers, Gene Ontology catalog, and Kyoto Encyclopedia of Genes and Genomes pathway catalog were analyzed. Finally, 11 types of unigenes related to detoxification and DEUs after pesticide treatment were listed, and Cytochrome P450, Glutathione S-transferase, and ATP-binding cassette transporter were analyzed. This study provides a foundation for molecular research on S. frugiperda pesticide detoxification.

Funder

Major Science and Technology Projects in Anhui Province

National Key R&D Program of China

Team Project of Anhui Academy of Agricultural Sciences

China’s donation to CABI Development Fund

Publisher

Oxford University Press (OUP)

Subject

Insect Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3