Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

Author:

Parsons Marilyn,Worthey Elizabeth A,Ward Pauline N,Mottram Jeremy C

Abstract

Abstract Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function based solely on sequence similarity. Hence the connection of stimuli to protein phosphorylation networks remains enigmatic. The presence of numerous PKs with significant sequence similarity to known drug targets, as well as a large number of unusual kinases that might represent novel targets, strongly argue for functional analysis of these molecules.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference100 articles.

1. TDR Homepage. 2005, [http://www.who.int/tdr]

2. Lejon V, Buscher P: Review Article: Cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop Med Int Health. 2005, 10: 395-403. 10.1111/j.1365-3156.2005.01403.x.

3. Higuchi ML, Benvenuti LA, Martins RM, Metzger M: Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovasc Res. 2003, 60: 96-107. 10.1016/S0008-6363(03)00361-4.

4. Murray HW: Treatment of visceral leishmaniasis in 2004. Am J Trop Med Hyg. 2004, 71: 787-794.

5. El-Sayed NMA, Myler PJ, Bartholomeu D, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher A, Blandin G, Westenberger S, Haas B, Caler E, Cerqueira G, Arner E, Aslund L, Bontempi E, Branche C, Bringaud F, Campbell D, Carrington M, Crabtree JS, Darban H, Edwards K, Englund P, Feldblyum T, Ferella M, Frasch C, Kindlund E, Klingbeil MM, Kluge S, Koo HL, Lacerda D, McCulloch R, McKenna A, Mizuno Y, Mottram J, Ochaya S, Pai G, Parsons M, Pettersson U, Pop M, Luis Ramirez J, Salzberg S, Tammi M, Tarleton RL, Teixeira SM, Van Aken S, Wortman J, Stuart KD, Andersson B, Anapuma A, Attipoe P, Burton P, Cadag E, Franco da Silva J, de Jong P, Fazelinia G, Gull K, Horn D, Hou L, Huang Y, Levin MJ, Lorenzi H, Louie T, Machado CR, Nelson S, Osoegawa K, Pentony M, Rinta J, Robertson L, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Vogt C, Ward P, Wickstead B, White O, Fraser CM, Stuart KD, Andersson B: The genome sequence of Trypanosoma cruzi, etiological agent of Chagas' disease. Science. 2005, 309: 409-415. 10.1126/science.1112631.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3