Author:
Arias Patricia,Díez-Muñiz Sonia,García Raúl,Nombela César,Rodríguez-Peña José M,Arroyo Javier
Abstract
Abstract
Background
The yeast cell wall integrity mitogen-activated protein kinase (CWI-MAPK) pathway is the main regulator of adaptation responses to cell wall stress in yeast. Here, we adopt a genomic approach to shed light on two aspects that are only partially understood, namely, the characterization of the gene functional catalog associated with CWI pathway activation and the extent to which MAPK activation correlates with transcriptional outcomes.
Results
A systematic yeast mutant deletion library was screened for constitutive transcriptional activation of the CWI-related reporter gene MLP1. Monitoring phospho-Slt2/Mpk1 levels in the identified mutants revealed sixty-four deletants with high levels of phosphorylation of this MAPK, including mainly genes related to cell wall construction and morphogenesis, signaling, and those with unknown function. Phenotypic analysis of the last group of mutants suggests their involvement in cell wall homeostasis. A good correlation between levels of Slt2 phosphorylation and the magnitude of the transcriptional response was found in most cases. However, the expression of CWI pathway-related genes was enhanced in some mutants in the absence of significant Slt2 phosphorylation, despite the fact that functional MAPK signaling through the pathway was required. CWI pathway activation was associated to increased deposition of chitin in the cell wall - a known survival compensatory mechanism - in about 30% of the mutants identified.
Conclusion
We provide new insights into yeast genes related to the CWI pathway and into how the state of activation of the Slt2 MAPK leads to different outcomes, discovering the versatility of this kind of signaling pathways. These findings potentially have broad implications for understanding the functioning of other eukaryotic MAPKs.
Publisher
Springer Science and Business Media LLC
Reference85 articles.
1. Qi M, Elion EA: MAP kinase pathways. J Cell Sci. 2005, 118: 3569-3572. 10.1242/jcs.02470.
2. Chen RE, Thorner J: Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 2007, 1773: 1311-1340. 10.1016/j.bbamcr.2007.05.003.
3. Lee BN, Elion EA: The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci USA. 1999, 96: 12679-12684. 10.1073/pnas.96.22.12679.
4. Torres L, Martin H, Garcia-Saez MI, Arroyo J, Molina M, Sanchez M, Nombela C: A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol Microbiol. 1991, 5: 2845-2854. 10.1111/j.1365-2958.1991.tb01993.x.
5. Levin DE, Bowers B, Chen CY, Kamada Y, Watanabe M: Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell Mol Biol Res. 1994, 40: 229-239.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献