Digital PCR provides sensitive and absolute calibration for high throughput sequencing

Author:

White Richard A,Blainey Paul C,Fan H Christina,Quake Stephen R

Abstract

Abstract Background Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing. Results We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth. Conclusion The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference13 articles.

1. Holt RA, Jones SJM: The new paradigm of flow cell sequencing. Genome Research. 2008, 18: 839-846. 10.1101/gr.073262.107.

2. Gupta PK: Single-molecule DNA sequencing technologies for future genomics research. Trends in Biotechnology. 2008, 26: 602-611. 10.1016/j.tibtech.2008.07.003.

3. Bing DH, Boles C, Rehman FN, Audeh M, Belmarsh M, Kelley B, Adams CP: Bridge amplification: a solid phase PCR system for the amplification and detection of allelic differences in single copy genes. Genetic Identity Conference Proceedings, Seventh International Symposium on Human Identification. 1996, [http://www.promega.com/geneticidproc/ussymp7proc/0726.html]

4. Margulies M, et al: Genome sequencing in microfabricated high-density picoliter reactors. Nature. 2005, 437: 376-380.

5. Mackelprang R, Rubin EM: Paleontology: New Tricks with Old Bones. Science. 2008, 321: 211-212. 10.1126/science.1161890.

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3