The new paradigm of flow cell sequencing: Table 1.

Author:

Holt Robert A.,Jones Steven J.M.

Abstract

DNA sequencing is in a period of rapid change, in which capillary sequencing is no longer the technology of choice for most ultra-high-throughput applications. A new generation of instruments that utilize primed synthesis in flow cells to obtain, simultaneously, the sequence of millions of different DNA templates has changed the field. We compare and contrast these new sequencing platforms in terms of stage of development, instrument configuration, template format, sequencing chemistry, throughput capability, operating cost, data handling issues, and error models. While these platforms outperform capillary instruments in terms of bases per day and cost per base, the short length of sequence reads obtained from most instruments and the limited number of samples that can be run simultaneously imposes some practical constraints on sequencing applications. However, recently developed methods for paired-end sequencing and for array-based direct selection of desired templates from complex mixtures extend the utility of these platforms for genome analysis. Given the ever increasing demand for DNA sequence information, we can expect continuous improvement of this new generation of instruments and their eventual replacement by even more powerful technology.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3