Author:
Cao Suying,Han Jianyong,Wu Jun,Li Qiuyan,Liu Shichao,Zhang Wei,Pei Yangli,Ruan Xiaoan,Liu Zhonghua,Wang Xumin,Lim Bing,Li Ning
Abstract
Abstract
Background
Because few studies exist to describe the unique molecular network regulation behind pig pre-implantation embryonic development (PED), genetic engineering in the pig embryo is limited. Also, this lack of research has hindered derivation and application of porcine embryonic stem cells and porcine induced pluripotent stem cells (iPSCs).
Results
We identified and analyzed the genome wide transcriptomes of pig in vivo-derived and somatic cell nuclear transferred (SCNT) as well as mouse in vivo-derived pre-implantation embryos at different stages using mRNA deep sequencing. Comparison of the pig embryonic transcriptomes with those of mouse and human pre-implantation embryos revealed unique gene expression patterns during pig PED. Pig zygotic genome activation was confirmed to occur at the 4-cell stage via genome-wide gene expression analysis. This activation was delayed to the 8-cell stage in SCNT embryos. Specific gene expression analysis of the putative inner cell mass (ICM) and the trophectoderm (TE) revealed that pig and mouse pre-implantation embryos share regulatory networks during the first lineage segregation and primitive endoderm differentiation, but not during ectoderm commitment. Also, fatty acid metabolism appears to be a unique characteristic of pig pre-implantation embryonic development. In addition, the global gene expression patterns in the pig SCNT embryos were different from those in in vivo-derived pig embryos.
Conclusions
Our results provide a resource for pluripotent stem cell engineering and for understanding pig development.
Publisher
Springer Science and Business Media LLC
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献