Embryonic stem cells alone are able to support fetal development in the mouse

Author:

Nagy A.1,Gocza E.1,Diaz E.M.1,Prideaux V.R.1,Ivanyi E.1,Markkula M.1,Rossant J.1

Affiliation:

1. Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

Abstract

The developmental potential of embryonic stem (ES) cells versus 3.5 day inner cell mass (ICM) was compared after aggregation with normal diploid embryos and with developmentally compromised tetraploid embryos. ES cells were capable of colonizing somatic tissues in diploid aggregation chimeras but less efficiently than ICMs of the same genotype. When ICM in equilibrium with tetraploid and ES in equilibrium with tetraploid chimeras were made, the newborns were almost all completely ICM- or ES-derived, as judged by GPI isozyme analysis, but tetraploid cells were found in the yolk sac endoderm and trophectoderm lineage. Investigation of ES contribution in 13.5 day ES in equilibrium with tetraploid chimeras by DNA in situ hybridization confirmed the complete tetraploid origin of the placenta (except the fetal blood and blood vessels) and the yolk sac endoderm. However, the yolk sac mesoderm, amnion and fetus contained only ES-derived cells. ES-derived newborns failed to survive after birth, although they had normal birthweight and anatomically they appeared normal. This phenomenon remains unexplained at the moment. The present results prove that ES cells are able to support complete fetal development, resulting in ES-derived newborns, and suggest a useful route for studying the development of genetically manipulated ES cells in all fetal lineages.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3