Author:
Ho Antoine,Murphy Maurice,Wilson Susan,Atlas Susan R,Edwards Jeremy S
Abstract
Abstract
Background
Sequencing-by-ligation (SBL) is one of several next-generation sequencing methods that has been developed for massive sequencing of DNA immobilized on arrayed beads (or other clonal amplicons). SBL has the advantage of being easy to implement and accessible to all because it can be performed with off-the-shelf reagents. However, SBL has the limitation of very short read lengths.
Results
To overcome the read length limitation, research groups have developed complex library preparation processes, which can be time-consuming, difficult, and result in low complexity libraries. Herein we describe a variation on traditional SBL protocols that extends the number of sequential bases that can be sequenced by using Endonuclease V to nick a query primer, thus leaving a ligatable end extended into the unknown sequence for further SBL cycles. To demonstrate the protocol, we constructed a known DNA sequence and utilized our SBL variation, cyclic SBL (cSBL), to resequence this region. Using our method, we were able to read thirteen contiguous bases in the 3' - 5' direction.
Conclusions
Combining this read length with sequencing in the 5' - 3' direction would allow a read length of over twenty bases on a single tage. Implementing mate-paired tags and this SBL variation could enable > 95% coverage of the genome.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. McPherson JD: Next-generation gap. Nat Methods. 2009, 6 (11 Suppl): S2-5.
2. Collins FS, Morgan M, Patrinos A: The Human Genome Project: lessons from large-scale biology. Science. 2003, 300 (5617): 286-290. 10.1126/science.1084564.
3. Lee CC, Snyder TM, Quake SR: A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 38 (8): 2514-2521.
4. Pushkarev D, Neff NF, Quake SR: Single-molecule sequencing of an individual human genome. Nat Biotechnol. 2009, 27 (9): 847-852. 10.1038/nbt.1561.
5. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, Carnevali P, Nazarenko I, Nilsen GB, Yeung G: Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 327 (5961): 78-81.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献