Author:
Alabady Magdy S,Youn Eunseog,Wilkins Thea A
Abstract
Abstract
Background
Cotton fiber is a single-celled seed trichome of major biological and economic importance. In recent years, genomic approaches such as microarray-based expression profiling were used to study fiber growth and development to understand the developmental mechanisms of fiber at the molecular level. The vast volume of microarray expression data generated requires a sophisticated means of data mining in order to extract novel information that addresses fundamental questions of biological interest. One of the ways to approach microarray data mining is to increase the number of dimensions/levels to the analysis, such as comparing independent studies from different genotypes. However, adding dimensions also creates a challenge in finding novel ways for analyzing multi-dimensional microarray data.
Results
Mining of independent microarray studies from Pima and Upland (TM1) cotton using double feature selection and cluster analyses identified species-specific and stage-specific gene transcripts that argue in favor of discrete genetic mechanisms that govern developmental programming of cotton fiber morphogenesis in these two cultivated species. Double feature selection analysis identified the highest number of differentially expressed genes that distinguish the fiber transcriptomes of developing Pima and TM1 fibers. These results were based on the finding that differences in fibers harvested between 17 and 24 day post-anthesis (dpa) represent the greatest expressional distance between the two species. This powerful selection method identified a subset of genes expressed during primary (PCW) and secondary (SCW) cell wall biogenesis in Pima fibers that exhibits an expression pattern that is generally reversed in TM1 at the same developmental stage. Cluster and functional analyses revealed that this subset of genes are primarily regulated during the transition stage that overlaps the termination of PCW and onset of SCW biogenesis, suggesting that these particular genes play a major role in the genetic mechanism that underlies the phenotypic differences in fiber traits between Pima and TM1.
Conclusion
The novel application of double feature selection analysis led to the discovery of species- and stage-specific genetic expression patterns, which are biologically relevant to the genetic programs that underlie the differences in the fiber phenotypes in Pima and TM1. These results promise to have profound impacts on the ongoing efforts to improve cotton fiber traits.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Xing EP, Jordan MI, Karp RM: Feature selection for high-dimensional genomic microarray data. Proceedings of the Eighteenth International Conference on Machine Learning. 2001, 601–608-
2. John GH, Kohavi R, Pfleger K: Irrelevant features and the subset selection problem. 1994, New Brunswick, NJ, USA, Morgan Kaufmann, 129:
3. Jirapech-Umpai T, Aitken S: Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. BMC Bioinformatics. 2005, 6 (1): 148-10.1186/1471-2105-6-148.
4. Loguercio LL, Zhang JQ, Wilkins TA: Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular and General Genetics MGG. 1999, 261 (4): 660-671. 10.1007/s004380050009.
5. Wilkins TA, Arpat AB: Mini Review The cotton fiber transcriptome. 2005, Blackwell Synergy, 124 (3): 295-
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献