Developmental Transcriptional Model Describing Regulated Genes, Qtls And Pathways During The Primary And Secondary Cell Walls Of Pima Fibers

Author:

Alabady Magdy S.ORCID,Arpat Bulak A.

Abstract

AbstractGossypium barbadense L. (Egyptian and Pima) produces single celled fiber trichomes that are the longest and richest in cellulosic contents in the plant kingdom. Developmental dissection of fiber at the transcriptional level is crucial to unveiling the genetic mechanisms underpinning fiber morphogenesis. We profiled the transcriptome of developing Pima fibers, as well as genes associated with consensus fiber quality QTLs, at seven developmental time points covering both primary (PCW) and secondary (SCW) cell wall stages. A total of 2,934 genes were differentially expressed at only one (45.19%) or at multiple (54.81%) developmental time points. Based on the coincidence between gene expression dynamics and the time frame of fiber developmental stages, five stage-specific expression profiles were identified. As a link between fiber QTLs and gene expression, 5 potential developmentally regulated QTLs (drQTLs) corresponding to different fiber developmental stages were identified. Genes in the ubiquitin proteolytic pathway, particularly QTL associated genes, appeared to be involved in regulating the transition stage between PCW and SCW; a stage that is crucial to both fiber length and strength in the extra-long staple cotton genotypes. In this respect, Yeast-two-hybrids identified interactions between UBC9 and genes involved in cell and organ elongation, polar cell expansion, microtubule cytoskeleton dynamics and organization, and basic amino acids transportation during the SCW/SCW transition. Altogether, these results were integrated into a proposed model linking fiber developmental stages with the Pima fiber traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3