Author:
Solonenko Sergei A,Ignacio-Espinoza J César,Alberti Adriana,Cruaud Corinne,Hallam Steven,Konstantinidis Kostas,Tyson Gene,Wincker Patrick,Sullivan Matthew B
Abstract
Abstract
Background
Microbes drive the biogeochemistry that fuels the planet. Microbial viruses modulate their hosts directly through mortality and horizontal gene transfer, and indirectly by re-programming host metabolisms during infection. However, our ability to study these virus-host interactions is limited by methods that are low-throughput and heavily reliant upon the subset of organisms that are in culture. One way forward are culture-independent metagenomic approaches, but these novel methods are rarely rigorously tested, especially for studies of environmental viruses, air microbiomes, extreme environment microbiology and other areas with constrained sample amounts. Here we perform replicated experiments to evaluate Roche 454, Illumina HiSeq, and Ion Torrent PGM sequencing and library preparation protocols on virus metagenomes generated from as little as 10pg of DNA.
Results
Using %G + C content to compare metagenomes, we find that (i) metagenomes are highly replicable, (ii) some treatment effects are minimal, e.g., sequencing technology choice has 6-fold less impact than varying input DNA amount, and (iii) when restricted to a limited DNA concentration (<1μg), changing the amount of amplification produces little variation. These trends were also observed when examining the metagenomes for gene function and assembly performance, although the latter more closely aligned to sequencing effort and read length than preparation steps tested. Among Illumina library preparation options, transposon-based libraries diverged from all others and adaptor ligation was a critical step for optimizing sequencing yields.
Conclusions
These data guide researchers in generating systematic, comparative datasets to understand complex ecosystems, and suggest that neither varied amplification nor sequencing platforms will deter such efforts.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Chaffron S, Rehrauer H, Pernthaler J, von Mering C: A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010, 20: 947-959. 10.1101/gr.104521.109.
2. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ: Population genomics of early events in the ecological differentiation of bacteria. Science. 2012, 336: 48-51. 10.1126/science.1218198.
3. Handelsman J, Tiedje JM, Alvarez-Cohen L, Ashburner M, Cann IKO, Delong EF, Doolittle WF, Fraser-Liggett CM, Godzik A, Gordon JI: New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. Nat Res Council Report. 2007, 13-
4. Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011, 11: 759-769. 10.1111/j.1755-0998.2011.03024.x.
5. Kircher M, Kelso J: High-throughput DNA sequencing–concepts and limitations. BioEssays : news and reviews in molecular, cellular and developmental biology. 2010, 32: 524-536. 10.1002/bies.200900181.
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献