Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation

Author:

Kushwaha Hemant R,Singh Anil K,Sopory Sudhir K,Singla-Pareek Sneh L,Pareek Ashwani

Abstract

Abstract Background In Arabidopsis thaliana (L.) Heynh and Oryza sativa L., a large number of genes encode proteins of unknown functions, whose characterization still remains one of the major challenges. With an aim to characterize these unknown proteins having defined features (PDFs) in plants, we have chosen to work on proteins having a cystathionine β-synthase (CBS) domain. CBS domain as such has no defined function(s) but plays a regulatory role for many enzymes and thus helps in maintaining the intracellular redox balance. Its function as sensor of cellular energy has also been widely suggested. Results Our analysis has identified 34 CBS domain containing proteins (CDCPs) in Arabidopsis and 59 in Oryza. In most of these proteins, CBS domain coexists with other functional domain(s), which may indicate towards their probable functions. In order to investigate the role(s) of these CDCPs, we have carried out their detailed analysis in whole genomes of Arabidopsis and Oryza, including their classification, nomenclature, sequence analysis, domain analysis, chromosomal locations, phylogenetic relationships and their expression patterns using public databases (MPSS database and microarray data). We have found that the transcript levels of some members of this family are altered in response to various stresses such as salinity, drought, cold, high temperature, UV, wounding and genotoxic stress, in both root and shoot tissues. This data would be helpful in exploring the so far obscure functions of CBS domain and CBS domain-containing proteins in plant stress responses. Conclusion We have identified, classified and suggested the nomenclature of CDCPs in Arabidopsis and Oryza. A comprehensive analysis of expression patterns for CDCPs using the already existing transcriptome profiles and MPSS database reveals that a few CDCPs may have an important role in stress response/tolerance and development in plants, which needs to be validated further through functional genomics.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3