Analysis of Growth Trajectories and Verification of Related SNPs in Populus deltoides

Author:

Wang Yaolin1,Wang Zesen1,Zhu Sheng1ORCID,Pan Huixin1,Ding Changjun2,Xu Meng1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Abstract

As an important timber genus with high economic and ecological values, Populus is a model for dissecting the genetic architecture of growth traits in perennial forest trees. However, the genetic mechanisms of longitudinal growth traits in poplar remain incompletely understood. In this study, we conducted longitudinal genetic analysis of height and diameter at breast height (DBH) in eleven-year poplar clones using ultra-deep sequencing datasets. We compared four S-shaped growth models, including asymptotic, Gompertz, logistic, and Richard, on eleven-year height and DBH records in terms of five metrics. We constructed the best-fitting growth model (Richard) and determined poplar ontogenetic stages by virtue of growth curve fitting and likelihood ratio testing. This study provides some scientific clues for temporal variation of longitudinal growth traits in Populus species.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3