Author:
Belova Tatiana,Zhan Bujie,Wright Jonathan,Caccamo Mario,Asp Torben,Šimková Hana,Kent Matthew,Bendixen Christian,Panitz Frank,Lien Sigbjørn,Doležel Jaroslav,Olsen Odd-Arne,Sandve Simen R
Abstract
Abstract
Background
The assembly of the bread wheat genome sequence is challenging due to allohexaploidy and extreme repeat content (>80%). Isolation of single chromosome arms by flow sorting can be used to overcome the polyploidy problem, but the repeat content cause extreme assembly fragmentation even at a single chromosome level. Long jump paired sequencing data (mate pairs) can help reduce assembly fragmentation by joining multiple contigs into single scaffolds. The aim of this work was to assess how mate pair data generated from multiple displacement amplified DNA of flow-sorted chromosomes affect assembly fragmentation of shotgun assemblies of the wheat chromosomes.
Results
Three mate pair (MP) libraries (2 Kb, 3 Kb, and 5 Kb) were sequenced to a total coverage of 89x and 64x for the short and long arm of chromosome 7B, respectively. Scaffolding using SSPACE improved the 7B assembly contiguity and decreased gene space fragmentation, but the degree of improvement was greatly affected by scaffolding stringency applied. At the lowest stringency the assembly N50 increased by ~7 fold, while at the highest stringency N50 was only increased by ~1.5 fold. Furthermore, a strong positive correlation between estimated scaffold reliability and scaffold assembly stringency was observed. A 7BS scaffold assembly with reduced MP coverage proved that assembly contiguity was affected only to a small degree down to ~50% of the original coverage.
Conclusion
The effect of MP data integration into pair end shotgun assemblies of wheat chromosome was moderate; possibly due to poor contig assembly contiguity, the extreme repeat content of wheat, and the use of amplified chromosomal DNA for MP library construction.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Global Perspective Studies Unit - Food and Agriculture Organization of the United Nation: World agriculturae: towards 2030/2050 - Interim report - Prospects for food, nutrition, agriculture and major commodity groups. 2006, Rome: Food and Agriculture Organization of the United Nation
2. The Government Office for Science: Foresight: The Future of Food and Farming - Final Project Report. 2011, London, United Kingdom: Government Office for Science
3. Jannink J-L, Lorenz AJ, Iwata H: Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010, 9 (2): 166-177. 10.1093/bfgp/elq001.
4. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN: The genome of Theobroma cacao. Nat Genet. 2011, 43 (2): 101-108. 10.1038/ng.736.
5. The Potato Sequencing Consortium: Genome sequence and analysis of the tuber crop potato. Nature. 2011, 475 (7355): 189-195. 10.1038/nature10158.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献