High-frequency terahertz waves disrupt Alzheimer’s β-amyloid fibril formation

Author:

Peng Wenyu,Zhu ZhiORCID,Lou Jing,Chen KunORCID,Wu YuanmingORCID,Chang ChaoORCID

Abstract

AbstractThe accumulation and deposition of amyloid can cause a variety of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease. The degradation or clearance of this accumulation is currently the most widely accepted therapeutic strategy for intervention in these pathologies. Our study on amyloid-β (Aβ) oligomers in vitro revealed that high-frequency terahertz (THz) waves at a specific frequency of 34.88 THz could serve as a physical, efficient, non-thermal denaturation technique to delay the fibrotic process by 80%, as monitored by a thioflavine T (ThT) binding assay and Fourier transform infrared (FTIR) spectroscopy. Additionally, THz waves of this frequency have been shown to have no side effects on normal cells, as confirmed by cell viability and mitochondrial membrane potential assays. Furthermore, molecular dynamic (MD) simulations revealed that the THz waves could resonate with Aβ fibrils, disrupting the dense conformation by breaking the β-sheet structure and promoting the formation of abundant coil and bend structures. This study uses the amyloid of Aβ as an example, and the results will further guide interventions for the accumulation of other amyloids, which may provide new ideas for the remission of related diseases.

Funder

National Natural Science Foundation of China

Key innovative project in Shaanxi

Shanghai Rising-Star Program

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3