White-light crosslinkable milk protein bioadhesive with ultrafast gelation for first-aid wound treatment

Author:

Zhu Qinchao,Zhou Xuhao,Zhang Yanan,Ye Di,Yu Kang,Cao Wangbei,Zhang Liwen,Zheng Houwei,Sun Ziyang,Guo Chengchen,Hong Xiaoqian,Zhu Yang,Zhang Yajun,Xiao Ying,Valencak Teresa G.,Ren Tanchen,Ren DaxiORCID

Abstract

Abstract Background Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time. Methods A white-light crosslinkable natural milk-derived casein hydrogel bioadhesive is presented for the first time. Benefiting from abundant tyrosine residues, casein hydrogel bioadhesive was synthesized by forming di-tyrosine bonds under white light with a ruthenium-based catalyst. We firstly optimized the concentration of proteins and initiators to achieve faster gelation and higher mechanical strength. Then, we examined the degradation, cytotoxicity, tissue adhesion, hemostasis, and wound healing ability of the casein hydrogels to study their potential to be used as bioadhesives. Result Rapid gelation of casein hydrogel is initiated with an outdoor flashlight, a cellphone flashlight, or an endoscopy lamp, which facilitates its usage during first-aid and minimally invasive operations. The rapid gelation enables 3D printing of the casein hydrogel and excellent hemostasis even during liver hemorrhage due to section injury. The covalent binding between casein and tissue enables robust adhesion which can withstand more than 180 mmHg blood pressure. Moreover, the casein-based hydrogel can facilitate post-traumatic wound healing caused by trauma due to its biocompatibility. Conclusion Casein-based bioadhesives developed in this study pave a way for broad and practical application in emergency wound management.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangxi Key Research and Development Program

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3