Solubilized chlorin e6-layered double hydroxide complex for anticancer photodynamic therapy

Author:

Jo Young-um,Sim HyunJune,Lee Chung-Sung,Kim Kyoung Sub,Na KunORCID

Abstract

Abstract Background Layered double hydroxides (LDHs) are one type of 2-dimensional material with unique structure and strongly positive surface charge. Particularly, LDHs can be exfoliated by mono-layered double hydroxides (MLHs) as a single layer, showing an increased surface area. Therefore, there is a large focus on LDHs for drug delivery applications. Furthermore, most photosensitizers are hydrophobic that they cannot be soluble in aqueous solvents. Herein, we designed a simple way to solubilize hydrophobic photosensitizers by MLH with electrostatic interactions for anticancer photodynamic therapy (PDT), which has tremendous therapeutic advantages. The photosensitizer solubilized via loading on the MLH exhibited fluorescence and singlet oxygen-generation activities in aqueous solvent without chemical modification, resulting in photo-mediated anticancer treatment. Methods Negatively charged hydrophobic photosensitizers, chlorin e6 (Ce6) were solubilized by loading on the MLHs through the electrostatic interaction between positively charged MLHs. MLH/Ce6 complexes evaluated for physico-chemical characterization, pH-sensitive release property, in vitro photocytotoxicity, and in vivo tumor ablation. Results The photosensitizer solubilized via MLH exhibited fluorescence intensity and singlet-oxygen generation activities in aqueous solvent without chemical modification, resulting photocytotoxicity in cancer cells. The encapsulation efficiency of Ce6 increased to 21.2% through MLH compared to 0.6% when using LDH. In tumor-bearing mice, PDT with solubilized MLH/Ce6 indicated a tumor-suppressing effect approximately 3.4-fold greater than that obtained when Ce6 was injected alone. Conclusions This study provided the solubilized Ce6 by the MLH in a simple way without chemical modification. We demonstrated that MLH/Ce6 complexes would have a great potential for anticancer PDT.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3