Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment

Author:

Bian Yixin1,Cai Xuejie1,Lv Zehui1,Xu Yiming1,Wang Han1,Tan Chaoliang23,Liang Ruizheng4,Weng Xisheng1ORCID

Affiliation:

1. Department of Orthopedic Surgery State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital Chinese Academy of Medical Science and Peking Union Medical College Beijing 100730 P. R. China

2. Department of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF) City University of Hong Kong Kowloon Hong Kong P. R. China

3. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China

4. State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractBone diseases including bone defects, bone infections, osteoarthritis, and bone tumors seriously affect life quality of the patient and bring serious economic burdens to social health management, for which the current clinical treatments bear dissatisfactory therapeutic effects. Biomaterial‐based strategies have been widely applied in the treatment of orthopedic diseases but are still plagued by deficient bioreactivity. With the development of nanotechnology, layered double hydroxides (LDHs) with adjustable metal ion composition and alterable interlayer structure possessing charming physicochemical characteristics, versatile bioactive properties, and excellent drug loading and delivery capabilities arise widespread attention and have achieved considerable achievements for bone disease treatment in the last decade. However, to the authors' best knowledge, no review has comprehensively summarized the advances of LDHs in treating bone disease so far. Herein, the advantages of LDHs for orthopedic disorders treatment are outlined and the corresponding state‐of‐the‐art achievements are summarized for the first time. The potential of LDHs‐based nanocomposites for extended therapeutics for bone diseases is highlighted and perspectives for LDHs‐based scaffold design are proposed for facilitated clinical translation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3