Author:
Liu Zhuang,Zhao Menglong,Wang Han,Fu Zi,Gao Hongbo,Peng Weijun,Ni Dalong,Tang Wei,Gu Yajia
Abstract
AbstractContrast-enhanced MR angiography (MRA) is a critical technique for vascular imaging. Nevertheless, the efficacy of MRA is often limited by the low rate of relaxation, short blood-circulation time, and metal ion-released potential long-term toxicity of clinical available Gd-based contrast agents. In this work, we report a facile and efficient strategy to achieve Gd-chelated organic nanoparticles with high relaxivity for T1-weighted MRA imaging. The Gd-chelated PEG-TCPP nanoparticles (GPT NPs) have been engineered composite structured consisting of Gd-chelated TCPP and PEG. The spherical structure of TCPP offers more chemical sites for Gd3+ coordination to improve the relaxivity and avoid leakage of the Gd3+ ions. The synthesized GPT NPs exhibit a high relaxation rate of 35.76 mM− 1 s− 1 at 3.0 T, which is higher than the rates for most reported MR contrast agents. Therefore, GPT NPs can be used for MRA with much stronger vascular signals, longer circulation time, and high-resolution arterial vascular visualization than those using clinical MR contrast agents at the same dose. This work may make the T1 MRI contrast agents for high-resolution angiography possible and offer a new candidate for preclinical and clinical applications of MR vascular imaging and vascular disease diagnosis.
Graphical Abstract
Funder
Shanghai Sailing Program
National Natural Science Foundation of China
Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support
Foundation of National Facility for Translational Medicine
Postdoctoral Research Foundation of China
Shanghai Anticancer Association Eyas Project
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference23 articles.
1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139-596.
2. Wang J, Jia Y, Wang Q, Liang Z, Han G, Wang Z, et al. An ultrahigh-field-tailored T1 -T2 dual-mode MRI contrast agent for high-performance vascular imaging. Adv Mater. 2021;33:e2004917.
3. Shin TH, Kim PK, Kang S, Cheong J, Kim S, Lim Y, et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Eng. 2021;5:252–63.
4. Haedicke K, Agemy L, Omar M, Berezhnoi A, Roberts S, Longo-Machado C, et al. High-resolution optoacoustic imaging of tissue responses to vascular-targeted therapies. Nat Biomed Eng. 2020;4:286–97.
5. Chen W, Xing W, Peng Y, He Z, Wang C, Wang Q. Cerebral aneurysms: accuracy of 320-detector row nonsubtracted and subtracted volumetric CT angiography for diagnosis. Radiology. 2013;269:841–9.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献