Eobania vermiculata whole-body muscle extract-loaded chitosan nanoparticles enhanced skin regeneration and decreased pro-inflammatory cytokines in vivo

Author:

Farid AlyaaORCID,Ooda Adham,Nabil Ahmed,Nasser Areej,Ahmed Esraa,Ali Fatma,Mohamed Fatma,Farid Habiba,Badran Mai,Ahmed Mariam,Ibrahim Mariam,Rasmy Mariam,Saleeb Martina,Riad Vereena,Ibrahim Yousr,Madbouly Neveen

Abstract

Abstract Background Usually, wounds recover in four to six weeks. Wounds that take longer time than this to heal are referred to as chronic wounds. Impaired healing can be caused by several circumstances like hypoxia, microbial colonization, deficiency of blood flow, reperfusion damage, abnormal cellular reaction and deficiencies in collagen production. Treatment of wounds can be enhanced through systemic injection of the antibacterial drugs and/or other topical applications of medications. However, there are a number of disadvantages to these techniques, including the limited or insufficient medication penetration into the underlying skin tissue and the development of bacterial resistance with repeated antibiotic treatment. One of the more recent treatment options may involve using nanotherapeutics in combination with naturally occurring biological components, such as snail extracts (SE). In this investigation, chitosan nanoparticles (CS NPs) were loaded with an Eobania vermiculata whole-body muscle extract. The safety of the synthesized NPs was investigated in vitro to determine if these NPs might be utilized to treat full-skin induced wounds in vivo. Results SEM and TEM images showed uniformly distributed, spherical, smooth prepared CS NPs and snail extract-loaded chitosan nanoparticles (SE-CS NPs) with size ranges of 76–81 and 91–95 nm, respectively. The zeta potential of the synthesized SE-CS NPs was − 24.5 mV, while that of the CS NPs was 25 mV. SE-CS NPs showed a remarkable, in vitro, antioxidant, anti-inflammatory and antimicrobial activities. Successfully, SE-CS NPs (50 mg/kg) reduced the oxidative stress marker (malondialdehyde), reduced inflammation, increased the levels of the antioxidant enzymes (superoxide dismutase and glutathione), and assisted the healing of induced wounds. SE-CS NPs (50 mg/kg) can be recommended to treat induced wounds safely. SE was composed of a collection of several wound healing bioactive components [fatty acids, amino acids, minerals and vitamins) that were loaded on CS NPs. Conclusions The nanostructure enabled bioactive SE components to pass through cell membranes and exhibit their antioxidant and anti-inflammatory actions, accelerating the healing process of wounds. Finally, it is advised to treat rats’ wounds with SE-CS NPs. Graphical abstract

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3