Author:
Ding Yingying,Jin Yang,Peng Tao,Gao Yankun,Zang Yang,He Hongliang,Li Fei,Zhang Yu,Zhang Hongjuan,Chen Lina
Abstract
Abstract
Background
Disruption of the postsynaptic density protein-95 (PSD95)—neuronal nitric oxide synthase (nNOS) coupling is an effective way to treat ischemic stroke, however, it still faces some challenges, especially lack of satisfactory PSD95-nNOS uncouplers and the efficient high throughput screening model to discover them.
Results
Herein, the multifunctional metal–organic framework (MMOF) nanoparticles as a new screening system were innovatively fabricated via layer-by-layer self-assembly in which His-tagged nNOS was selectively immobilized on the surface of magnetic MOF, and then PSD95 with green fluorescent protein (GFP-PSD95) was specifically bound on it. It was found that MMOF nanoparticles not only exhibited the superior performances including the high loading efficiency, reusability, and anti-interference ability, but also possessed the good fluorescent sensitivity to detect the coupled GFP-PSD95. After MMOF nanoparticles interacted with the uncouplers, they would be rapidly separated from uncoupled GFP-PSD95 by magnet, and the fluorescent intensities could be determined to assay the uncoupling efficiency at high throughput level.
Conclusions
In conclusion, MMOF nanoparticles were successfully fabricated and applied to screen the natural actives as potential PSD95-nNOS uncouplers. Taken together, our newly developed method provided a new material as a platform for efficiently discovering PSD95-nNOS uncouplers for stoke treatment.
Graphical Abstract
Funder
Medical Scientific Research Project of Jiangsu Provincial Health Commission
Natural Science Foundation of Jiangsu Province in China
National Natural Science Foundation of China
College Students’ Innovative Entrepreneurial Training Program of Jiangsu Province
key project which was supported by Jiangsu province to Kezhou of Xinjiang
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献