Tumor microenvironment responsive Mn3O4 nanoplatform for in vivo real-time monitoring of drug resistance and photothermal/chemodynamic synergistic therapy of gastric cancer

Author:

Li Hanrui,Cai Xiaoxia,Yi Tong,Zeng Yun,Ma Jingwen,Li Lei,Pang Liaojun,Li Na,Hu Hao,Zhan YonghuaORCID

Abstract

Abstract Background Postoperative chemotherapy for gastric cancer often causes multidrug resistance (MDR), which has serious consequences for therapeutic effects. Individualized treatment based on accurate monitoring of MDR will greatly improve patient survival. Results In this article, a self-enhanced Mn3O4 nanoplatform (MPG NPs) was established, which can react with glutathione to produce Mn2+ to enhance T1-weighted magnetic resonance imaging (MRI) and mediate in vivo real-time MDR monitoring. In vitro MRI results showed that MRI signals could be enhanced in the presence of hydrogen peroxide and glutathione and at acidic pH. In vivo MRI results indicated that MPG NPs could specifically target MDR cells, thereby realizing real-time monitoring of MDR in gastric cancer. Furthermore, MPG NPs have good chemodynamic activity, which can convert the endogenous hydrogen peroxide of tumor cells into highly toxic hydroxyl radical through Fenton-like reaction at acidic pH to play the role of chemodynamic therapy. In addition, Mn3O4 can significantly enhance the chemodynamic therapy effect because of its good photothermal conversion effect. Furthermore, in situ photothermal/chemodynamic synergistic therapy obtained remarkable results, the tumors of the mice in the synergistic therapy group gradually became smaller or even disappeared. Conclusions MPG NPs have good biocompatibility, providing a good nanoplatform for real-time monitoring and precise diagnosis and treatment of MDR in gastric cancer. Graphical Abstract

Funder

National Natural Science Foundation of China

Open Funding Project of National Key Laboratory of Human Factors Engineering

Fundamental Research Funds for the Central Universities

Shanghai Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3