Author:
Park Jun-Young,Lee Gyu-Ho,Yoo Kwai Han,Khang Dongwoo
Abstract
AbstractDespite the development of therapeutic modalities to treat cancer, multidrug resistance (MDR) and incomplete destruction of deeply embedded lung tumors remain long-standing problems responsible for tumor recurrence and low survival rates. Therefore, developing therapeutic approaches to treat MDR tumors is necessary. In this study, nanodrugs with enhanced intracellular drug internalization were identified by the covalent bonding of carbon nanotubes of a specific nano size and doxorubicin (DOX). In addition, carbon nanotube conjugated DOX (CNT-DOX) sustained in the intracellular environment in multidrug-resistant tumor cells for a long time causes mitochondrial damage, suppresses ATP production, and results in the effective therapeutic effect of drug-resistant tumors. This study identified that H69AR lung cancer cells, an adriamycin (DOX) drug-resistant tumor cell line, did not activate drug resistance function on designed nano-anticancer drugs with a specific nano size. In summary, this study identified that the specific size of the nanodrug in combination with DOX overcame multidrug-resistant tumors by inducing selective accumulation in tumor cells and inhibiting ATP by mitochondrial damage.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献