Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance

Author:

Guo Qingfeng1,Li Jie2,Mao Jing2,Chen Weijun2,Yang Meiyang2,Yang Yang2ORCID,Hua Yuming1,Qiu Lipeng2ORCID

Affiliation:

1. Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214122, China

2. School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China

Abstract

Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles were used to load the doxorubicin–vitamin E succinate (DV) prodrug and 3-methyladenine (3-MA) to enhance reverse MDR effects. The pH-sensitive DV can kill tumor cells and inhibit P-gp-mediated drug efflux, and 3-MA can inhibit autophagy. HA-MIL-125@DVMA had uniformly distributed particle size and high drug-load content. The nanoparticles could effectively release the drugs into tumor microenvironment due to the rapid hydrazone bond-breaking under low pH conditions, resulting in a high cumulative release rate. In in vitro cellular experiments, the accumulation of HA-MIL-125@DVMA and HA-MIL-125@DV in MCF-7/ADR cells was significantly higher than that in the control groups. Moreover, the nanoparticles significantly inhibited drug efflux in the cells, ensuring the accumulation of the drugs in cell cytoplasm and causing drug-resistant cells’ death. Importantly, HA-MIL-125@DVMA effectively inhibited tumor growth without changes in body weight in tumor-bearing mice. In summary, the combination of the acid-sensitive prodrug DV and autophagy inhibitor 3-MA in a HA-MIL-125 nanocarrier can enhance the antitumor effect and reverse tumor MDR.

Funder

National Key Research and Development Program of China

Wuxi Science and Technology Development Fund Project

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3