Author:
Zhu Yanli,Wang Jikai,Fu Chengxiao,Liu Shuangquan,Awasthi Pragati,Zeng Pengfei,Chen Danjun,Sun Yiyang,Mo Ziyi,Liu Hailing
Abstract
AbstractThis study presents the first-ever synthesis of samarium-doped indium vanadate nanosheets (IVONSs:Sm) via microemulsion-mediated solvothermal method. The nanosheets were subsequently utilized as a nano-matrix in laser desorption/ionization mass spectrometry (LDI-MS). It was discovered that the as-synthesized IVONSs:Sm possessed the following advantages: improved mass spectrometry signal, minimal matrix-related background, and exceptional stability in negative-ion mode. These qualities overcame the limitations of conventional matrices and enabled the sensitive detection of small biomolecules such as fatty acids. The negative-ion LDI mechanism of IVONSs:Sm was examined through the implementation of density functional theory simulation. Using IVONSs:Sm-assisted LDI-MS, fingerprint recognitions based on morphology and chemical profiles of endogenous/exogenous compounds were also achieved. Notably, crucial characteristics such as the age of an individual’s fingerprints and their physical state could be assessed through the longitudinal monitoring of particular biomolecules (e.g., ascorbic acid, fatty acid) or the specific biomarker bilirubin glucuronide. Critical information pertinent to the identification of an individual would thus be facilitated by the analysis of the compounds underlying the fingerprint patterns.
Graphical Abstract
Funder
Macao Young Scholars Program
Natural Science Foundation of Hunan Province
Natural Science Foundation of Hunan Province, China
Scientific Research Project of Hunan Provincial Health Commission
Scientific Research Project of Hunan Provincial Education Department
Doctoral Scientific Research Foundation of University of South China
Medical Technology Innovation Guidance Project of Hunan Province Science and Technology Department
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献