Author:
Hu Yao,Ni Jiajin,Zhang Buyue,Cheng Wei,Zhang Huating,Ye Hongying,Ji Lijin,Lu Bin,Guan Ming
Abstract
Abstract
Background
Macroprolactin is responsible for pseudohyperprolactinemia and is a common pitfall of the prolactin immunoassay. We aimed to determine the frequency of macroprolactinemia in Chinese hyperprolactinemic patients using monomeric prolactin discriminated by precipitation with polyethylene glycol (PEG).
Methods
Post-PEG monomeric prolactin gender-specific reference intervals were established for the Elecsys immunoassay method (Roche Diagnostics) using sera from healthy female (n = 120) and male (n = 120) donors. The reference intervals were validated using 20 macroprolactinemic (as assessed by gel filtration chromatography (GFC)) sera samples, and presence of monomeric prolactin was discriminated by GFC. Patients with high total prolactin were then screened by PEG precipitation to analyze macroprolactin. The demographic and biochemical details of patients with true hyperprolactinemia and macroprolactinemia were compared.
Results
Reference intervals for monomeric prolactin in females and males were 3.4–18.5 and 2.7–13.1 ng/mL, respectively. Among 1140 hyperprolactinemic patients, macroprolactinemia was identified in 261 (22.9 %) patients while the other 879 (77.1 %) patients were diagnosed with true hyperprolactinemia. Menstrual disturbances were the most common clinical feature in both groups. Galactorrhea, amenorrhea, and visual disturbances occurred more frequently in true hyperprolactinemic patients (P < 0.05).
Conclusions
The prevalence of macroprolactin in Chinese patients with hyperprolactinemia was described for the first time. Monomeric prolactin concentration, along with a reference interval screening with PEG precipitation, provides a diagnostic approach for hyperprolactinemia with improved accuracy.
Funder
Innovation Group Project of Shanghai Municipal Health Commission
Program of Shanghai Academic/ Technology Research Leader
Shanghai Municipal Key Clinical Specialty
Publisher
Springer Science and Business Media LLC
Subject
General Medicine,Endocrinology, Diabetes and Metabolism
Reference27 articles.
1. Kavanagh, L; McKenna, TJ; Fahie-Wilson, MN; et al. Specificity and clinical utility of methods for the detection of macroprolactin. [J]. Clin Chem.2006,52(7):1366–72
2. McCudden, CR; Sharpless, JL; Grenache, DG; Comparison of multiple methods for identification of hyperprolactinemia in the presence of macroprolactin. [J]. Clin Chim Acta.2010,411(3–4):155–60
3. Chen, YJ; Song, GZ; Wang, ZN; A new criteria for screening macroprolactinemia using polyethylene glycol treatment combined with different assays for prolactin. [J]. Eur Rev Med Pharmacol Sci.2016,20(9):1788–94
4. Sherazi, NA; Baig, MZ; Khan, AH; Frequency of Macroprolactin in Hyperprolactinemia. [J]. J Coll Physicians Surg Pak.2018,28(2):93–97
5. Kasum, M; Oreskovic, S; Cehic, E; et al. Laboratory and clinical significance of macroprolactinemia in women with hyperprolactinemia. [J]. Taiwan J Obstet Gynecol.2017,56(6):719–724
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献